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Abstract

We study the one-dimensional system of Ginzburg-Landau equations that
models a thin film of superconductor subjected to a tangential magnetic field.
We prove that the bifurcation curve for the symmetric problem is the graph
of a continuous function of the supremum of the order parameter. We also
prove the existence of a critical magnetic field. In general, there is more
than one positive solution to the symmetric boundary value problem. Our
numerical experiments have shown cases with three solutions. It is still an
open question whether only one of these corresponds to the physical solution
that minimizes the Gibbs free energy. We establish uniqueness for a related
boundary value problem.
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1 Introduction

The name Ginzburg-Landau has been associated with more than one sys-
tem of differential equations in more than one area of applied mathematics,
including the theory of hydrodynamics, liquid crystals, superconductivity,
and harmonic maps. Although the various systems have some similarities
in appearance, the actual structure of the equations and their theory are
sufficiently different to warrant independent studies. In this paper, we in-
vestigate the Ginzburg-Landau system that models a superconducting thin
film. Many good monographs exist on the theory of superconductivity [1],
[2], [15], and several recent survey articles [4], [7], [8] have been written with
mathematicians in mind; these should be consulted for further details on
the physics, experimental observations, alternative models, and additional
references. We describe here only those concepts that are necessary to make
our mathematical problem understandable.

Superconductivity was discovered in 1911 by Kammerlingh Onnes, who
observed that when certain material was cooled below some critical tem-
perature T, (characteristic of the material), the material abruptly lost its
electric resistivity and could conduct electric current without any loss of
energy. Physicists have studied the behavior of a superconductor when it is
subjected to a magnetic field (referred to as the external magnetic field to
distinguish it from the internal field measured at a point inside the mate-
rial). One of the early findings is that when the magnetic field is sufficiently
high, a superconductor will lose its superconductivity and revert back to a
normal conductor. The least magnetic field for which this occurs depends
on the temperature at which the experiment is conducted, and is called the
critical field H.(T'). Measurements show that the graph of H.(T) is close to
a parabola with vertex on 7" = 0 and horizontal intersect 7.

Physicists explain the loss of resistivity below T, as a phase transition,
conceptually similar to the change of a liquid into a solid upon cooling, al-
though the transition is at a subatomic level and no alteration in outward
appearance is discernible. It was Ginzburg and Landau’s ingenious idea to
apply the theory of phase transition to explain the onset of superconduc-
tivity. A crucial step is in postulating the form of the Gibbs free energy to
be minimized. For our purpose, it suflices to say that the electro-magnetic
properties of the superconductor are completely described by two quanti-
ties, the order parameter ¢(x) and the vector potential A(x), defined in



the three-dimensional region {2 occupied by the material. The former is a
complex-valued scalar function ¢ :  — C (analogous to the wave function
in quantum theory), and the latter is a real-valued three-dimensional vec-
tor A : Q — R>. The Ginzburg-Landau theory hypothesizes that the pair
(¢, A) seeks to minimize the Gibbs energy functional

G- | (—W #yloli+|(5-ia)e

where k is a characteristic constant of the material called its Ginzburg-
Landau parameter, i = v/—1, and H is the external magnetic field. It
appears as if the temperature T does not play a role in the energy functional.
This is not true. The formula for the Gibbs free energy in terms of known
physical quantities is rather complicated. It is only after some suitable
scaling (with scaling constants depending on T') of the quantities ¢ and A
that the formula reduces to the simpler form (1.1). Thus, after the ¢ and A
are solved by minimizing (1.1), they should be scaled back to give the actual
physical values representing the system. The final answers will then contain
the temperature T'. We also point out that the Ginzburg-Landau equations
are believed to be valid only for ideal superconductors and at temperatures
near T..
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No measurable quantities actually correspond directly to ¢ and A; rather,
physical quantities are given by values derived from ¢ and A. For instance,
the density of superelectrons is |#|*> and the superconducting current is
V x V x A. Tt can happen that two distinct pairs (¢1, A1) and (pq, Ay)
give identical answers when used to compute these measurable quantities.
More precisely, (¢1, A1) and (¢2, Aq) are said to be gauge equivalent if there
exists a scalar function y(x) such that

$1 = ¢pe), (1.2)

The correspondence that gives (¢1, A1) from (¢2, Ay) is called a gauge trans-
form. All gauge equivalent pairs represent the same physical state. In par-
ticular, they all give the same Gibbs free energy when substituted into (1.1).

Two- and three-dimensional Ginzburg-Landau systems have very rich
structures. The existence of vortex solutions, first shown by Abrikosov, led
to the discovery of Type II superconductors (we refer the reader to any of
the books and articles cited above).



The special case of a superconducting thin film is idealized by taking {2
to be an unbounded slab of thickness 21, @ = {(z,y,2): =l < < [}. When
the external magnetic field H is parallel (also said to be tangential) to the
film, one assumes that only the component of A parallel to H is significant
and that both ¢ and A are uniform in the y and z directions. In reality, for
a given external magnetic field H and Ginzburg-Landau constant x, these
assumptions are approximately valid only when the thickness is sufficiently
small. The ensuing mathematics problem, however, is well defined for all
positive values of the parameters. In addition, a suitable gauge can be chosen
to reduce ¢ to a real-valued function. To summarize, in the one-dimensional
case, the electromagnetic state of the superconducting film is described by
a pair of scalar functions (¢(z), a(z)) that minimizes the energy functional
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In the differential equation approach, the minimizer of the energy func-
tional satisfies the following Ginzburg-Landau system of equations,

Ba)’ = K (0(a)P + a(e) = 1) 6(a), @€ (<L)
{a%@:wwmu» (1:5)

with the natural boundary conditions
¢'(£l) =0, d(£l)=H. (1.6)

A solution of the Ginzburg-Landau system, on the other hand, need not
be a minimizer of the energy functional. A symmetric solution of (1.5) is
one that satisfies ¢(—z) = ¢(x) and a(—2z) = —a(z) or, alternatively, the
boundary conditions

¢(0) = ¢/(1) = a0) = 0.'(1) = I1. (L.7)

The one-dimensional problem has been studied by the authors [13], [14],
[5], [16], [17], [19]. Odeh [14] gave an existence proof of the minimizer based
on a variational approach. More recently, Yang [18] gave proofs of the exis-
tence and regularity of the solutions. For certain ranges of the parameters,
the minimizer is the trivial solution ¢(z) = 0, which corresponds to the
normal (nonsuperconducting) state of the material. The more interesting



case is, of course, when the minimizer is nontrivial. Wang and Yang [16]
showed the existence of a minimizer in the class of symmetric solutions and
derived some useful properties of a nontrivial symmetric minimizer, among
them the fact that ¢ is positive and monotonically decreasing in [0, 1] and
a is positive and monotonically increasing in [0, 1].

The question of uniqueness remains open. One approach to tackle the
problem is to study the bifurcation curve. One or more of the three param-
eters H,[, and k are varied and the corresponding boundary value problem
(BVP) is solved. Some characteristic value of the solution, usually max ¢,
is then plotted against the parameter(s) to obtain the bifurcation curve. In
Section 2, we show that the bifurcation curve for the symmetric solution,
relating ¢(0) to H, is the graph of a continuous function.

If the Ginzburg-Landau system has a unique solution, then the energy
functional has a unique minimizer, which must then also be symmetric. Un-
fortunately, numerical experiments indicate that, in general, a solution to
the system is not unique and not even necessarily symmetric. A study of
the asymptotic behavior and bifurcation of the solutions of the Ginzburg-
Landau system can be found in [3]. We have discovered through numerical
experiments examples in which there can be three nontrivial symmetric so-
lutions. There is strong evidence, but still unproven, that for any given &,
uniqueness prevails when [ is sufficiently small.

Another interesting problem is the existence of the upper critical field.
In Section 4 of [16], Wang and Yang mentioned that “it seems impossible to
achieve a sharp verification of ... [the existence of] a finite critical [magnetic
field].” They managed to show the weaker result that as H — oo, the
corresponding ¢ — 0 uniformly. We give a rigorous proof of the existence
of the critical field in Section 3.

We return to the uniqueness question in Section 4. FEven for a scalar
field equation, uniqueness can be difficult to show. A method first used by
Coffman has recently been applied to resolve some long-standing conjectures
involving semilinear elliptic equations; see [10], [11], [12]. In the case of
systems of equations, very few uniqueness results are known, except when
the energy functionals are convex, leading to equations of sublinear type.
In Section 4 we use the Kolodner-Coffman method to obtain a uniqueness
result for a boundary value problem of the Ginzburg-Landau system with
fixed-end boundary conditions for ¢ that is decreasing.



2 The Symmetric BVP: Monotonic Shooting and
the Bifurcation Curve

We scale the symmetric Ginzburg-Landau equations (1.5) to fit into the unit
interval [0, 1] instead of [0,/], and we use the new constants

K =xr%* 1L=1? h=IH, (2.1)
to obtain the system

o(r) = K (p(xf +a(2) — 1) 6(x),  ze€(0,1) |
{ @"(2) = Lé*(w)a(x), (22)

with boundary conditions

¢(0) = /(1) = a(0) = 0, a'(1)=h. (2.3)

The system always has a trivial solution, ¢(z) = 0 and a(z) = ha. As
shown in [16], the physically interesting solutions (namely, the minimizer
of the energy functional), if nontrivial, must be positive and monotonic in
[0,1]. The maximum value of ¢ is ¢(0).

We assume that K and L are given, and we solve the boundary value
problem for varying h. The set of pairs (¢(0),h) forms the bifurcation
curve of the system. We present a monotone shooting method to solve the
boundary value problem.

Let 3 < 1 and a be given positive numbers. We solve (2.2) as an initial
value problem with the initial values

P(0) =8, ¢'(0)=a(0)=0, d'(0)=a, (2.4)
and denote the solution as
P(z;e, B) and  a(z;o, B) (2.5)

to emphasize the dependence on the initial values. We can no longer guar-
antee that ¢(z;a, #) remains positive in [0, 1], nor can we guarantee that ¢
and a remain finite for all z € [0, 1].

The fact that the right-hand sides of the equations in (2.2) have co-
efficients that are increasing functions of ¢ and a (when both are positive)



yields a useful comparison result. We need the following form of the classical
Sturm comparison theorem in the proof.

Sturm Comparison Theorem. Suppose that y and Y are solutions of
the second order differential equations

y' =qlz)y, Y'=Q(2)Y, =¢€(cd), (2.6)

respectively, and that the following comparison conditions hold:

() < Q) aln) £Qe). B <

(2.7)

Then
y'(d) Y'(d)

< .

y'(d) ~ Y(d)

As a consequence, y oscillates strictly more (so y bends downward faster)
than Y in (c,d). If, furthermore,

(2.8)

yle) < Y(e), (2.9)

then
y(d)<Y(d) and v'(d)<Y'(d). (2.10)

Lemma 1 For fized x, the values ¢(x;a,f3), ¢&'(x;a,08), alz;a,B), and
a'(z; o, 3) are strictly increasing in o and 3, as long as the values remain
positive and finite.

Proof. Suppose that a < @ and 8 < . For simplicity, we write ¢(z) =
#(z;a, 3) and @(z) = ¢(x;@, 3), with similar notations for a(x). Then

#(z) < ¢(z) and a(z) < a(z) (2.11)

for x > 0 and z sufficiently near 0. If the inequalities remain true for all
x, then we are basically done. Let us suppose the contrary, namely, that
there is some d < 1, such that (2.11) holds for all = € (0,d) but that either
#(d) = ¢(d) or a(d) = a(d). In (0,d), the right-hand sides of (2.2) for ¢ and
a have smaller coefficients than those for ¢ and @ By the Sturm comparison
theorem, ¢ and a oscillate strictly more than ¢ and @, respectively. Then



#(d) < ¢(d) and a(d) < @(d), contradicting our assumption. Hence (2.11)
must hold for all z. That the same inequalities hold between the derivative of
the solutions is the last assertion in the conclusion of the Sturm comparison
theorem. 1

Lemma 2 For any 0 < § < 1, there exists one and only one o = a(f)
such that (¢(z; a(3),8),a(x,a(B),5)) is a solution to the Ginzburg-Landau
boundary value problem (2.2)-(2.3).

Proof. Uniqueness is a consequence of Lemma 1. Existence can be proved
by a shooting argument. If we choose a = 0, then ¢(z;0,3) is decreasing
in , so either ¢ crosses the z axis before reaching 1 or ¢(1;0,5) < 0. If
we choose a sufficiently large, then ¢(x; a, 5) will increase very rapidly after
an initial dip; ¢ will either blow up at a finite point or ¢'(1;a, 3) will be
greater than 0. A continuity argument then gives an intermediate « such
that ¢'(1;a,3) = 0, and we have a solution to the boundary value problem.

Lemma 3 The correspondence a(f) : 3 — « asserted in Lemma 2 is a
continuous decreasing function.

Proof. Monotonicity is a consequence of Lemma 1. Continuity follows if
we can show that the range of the function is onto an interval. To this
end, let a; = a(f1) < az = a(f;) be two given images in the range, and let
ay < ag < az. We have to show that there exists a §g such that a(fy) = ao.
By Lemma 1,

¢'(1; B1,@0) > ¢'(15 B1,01) = 0 (2.12)
and

¢'(1; B2, a0) < ¢/(1; B2, 1) = 0. (2.13)

By continuity, some intermediate 3y exists such that ¢'(1; Bp, a0) = 0. 1

Theorem 1 The bifurcation curve of our boundary value problem is the
union of the positive h axis (which represents the trivial solution) and the
graph of the continuous composite function

B a(B) — h(B) = d'(1;a(B), ). (2.14)



All curves start from the h axis with zero slope and end at 3 = 1 on the 3
axis. The initial height of the curve at the h axis is the value \ for which
the boundary value problem

v’ = K(h*2? — )u, /(0)=u(1)=0 (2.15)

has a positive solution.

Proof. The behavior of the bifurcation curve near ¢ = 0 can be examined
using classical asymptotic analysis; we omit the details. We merely point
out the heuristic arguments that as ¢ — 0, the second equation in (2.2)
degenerates to a” = 0. The limiting solution « is thus a linear function
of x, and the first equation in (2.2) degenerates to (2.15). The boundary
conditions in (2.15) are derived from the boundary conditions on ¢. |
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Figire 1. Typical bifurcation curves

Even though a(/) is monotone, h(3) need not be so. Indeed, the bound-
ary value problem has a unique solution if and only if A(f5) is a strictly
decreasing function of 3. We implemented the monotone shooting method
in MATLAB. In our program we use a as the shooting parameter and ad-
just 0§ to satisfy the boundary conditions. Two typical bifurcation curves are
shown in Figure 1. The differential equations are solved by using a fourth-
fifth order Runge-Kutta method with error bound estimation. We used the



error bound of 1071 for most of our experiments and even smaller bounds
if there is a need for higher precision.

The vertical axis is h, and the horizontal axis is #. The lower curve is
typical for L small. It is monotone, and uniqueness for the boundary value
problem prevails. The upper curve is representative for L large. Whenever
a horizontal line intersects the curve at more than one point, the boundary
value problem has multiple solutions. For a while, we conjectured that
all cases of nonuniqueness occur with a unimodal bifurcation curve. More
extensive experiments turned up the example I = 4, K = 3.6, in which the
bifurcation curve first decreases and then increases to a global maximum
before it decreases again to the point § = 1, h = 0. Table 1 lists the results
of our numerical computation. The first column gives 8 and the second
column the corresponding h. Similar behavior was observed by varying K
in the range 3.4 to 4.1, while keeping L = 4.

Table 1. Results with L =4, K = 3.4 — 4.1

J¥ h
0.86920073040461 | 2.02892378533588
0.83936182769457 | 2.06803427304492
0.80640879787522 | 2.08883938928138
0.77018919995251 | 2.09700047341807
0.73046894383778 | 2.09721411626507
0.68689914935239 | 2.09322143483159
0.63895895150244 | 2.08788602769435
0.58585181632874 | 2.08330544961489
0.52630220502554 | 2.08093445344534
0.45810552909473 | 2.08170706592965
0.37692312413923 | 2.08614998905450
0.27174054997177 | 2.09448313906868
0.07322708691641 | 2.10670529625534

3 Existence of a Critical Magnetic Field

The critical magnetic field of (2.2) is defined to be the smallest value h. such
that the only solution of the boundary value problem is the trivial solution.
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In the case of the symmetric boundary value problem, the existence of the
critical field is a simple consequence of the continuity of & as a function of 5.
In fact, h, is the supremum of h(3) over [0, 1], since for h > h., the only point
on the bifurcation curve with height A lies on the h axis and corresponds to
the trivial solution. This proof, however, is not applicable to the full-range
Ginzburg-Landau boundary value problem, since the continuity of A on ¢
has not yet been proved. We give below a different proof of the existence
of h. that is applicable in general. The idea of the proof is to show that
when £ is sufficiently large, then a must be sufficiently large outside of a
neighborhood of x = 0. Thus the coefficient of the right-hand side of the first
equation must be very large, outside of a neighborhood of = 0. The Sturm
comparison theorem can then be used to conclude that ¢ cannot oscillate
fast enough to satisfy the endpoint conditions at x = 1.

Theorem 2 For given K and L, there exists a critical magnetic filed h.
such that for all h > h., the Ginzburg-Landau boundary value problem has
only the trivial solution.

Proof. We give the proof only for the symmetric problem. It can easily be
generalized to the full-range problem. Since ¢(z) < 1, the second equation
in (2.2) gives the differential inequality

a"(z) < La(x). (3.1)
Solving this inequality with the given boundary conditions on a gives

hsinh(v/Lz)
ale) 2 sinh(vL)

When £ is sufficiently large, the above lower bound of a(z) can be made
arbitrarily large in [1/2,1]. We thus have

w2{y mpy o

(3.2)

with £ — oo as h — 00. The coefficient on the right-hand side of the first
equation in (2.2) satisfies the inequality

(@ + ¢ — 1) > q(z) = { o . iy Fl)/;/ﬂ L (34

11



Using the Sturm comparison theorem, we conclude that ¢ oscillates less than
the solution of the differential equation

u'(z) = q(x)u(x), u(0) = ¢(0),4'(0) = 0. (3.5)

In particular, if ¢ is nontrivial, ¢/(1) > w/(1). Direct computation shows
that w/(1) > 0 for & sufficiently large. Hence, ¢ cannot satisfy the boundary
condition ¢'(1) = 0. We have thus proved that ¢ cannot be nontrivial. 1

4 Uniqueness of a Related BVP

The uniqueness of the minimizer of the Gibbs energy functional for both the
full-range and symmetric Ginzburg-Landau system proves to be an elusive
conjecture. The uniqueness of the positive solution of the corresponding
Ginzburg-Landau equations is not even true in general. It is thus surprising
to be able to obtain uniqueness for a related problem. As far as we know, our
result is the first application of the Kolodner-Coffman method to a system
of equations.

We consider the Ginzburg-Landau equations (2.2) subject to the bound-
ary conditions

5(0) = Bo, &(1) = By are given, a(0) = 0,a'(1)=h  (4.1)
and the condition (we confine ourselves to positive decreasing ¢)

d(x) >0, ¢'(x)<0. (4.2)

Theorem 3 The Ginzburg-Landau boundary value problem (2.2) subject to
(4.1) and (4.2) has at most one solution.

One can solve this boundary value problem with a monotone shooting
method similar to the one described in Section 2 for the symmetric problem.
Instead of using the initial height of ¢ as the shooting parameter, we use the
initial slope ¢/(0) = 7. One can easily prove a comparison result similar to
Lemma 1, using a and ~ instead of o and . To solve the boundary value
problem, one shoots out a solution ¢ with initial height 5y and some chosen
initial slope 7. The initial slope a of @ is then adjusted so that ¢(1) hits

12



the target height ;. This defines a function that maps v to a and then to
h(y) = d'(1; @, 7). Uniqueness will hold if the correspondence v — h is a
monotonic function.

Suppose we already have a solution to our boundary value problem.
Following the Kolodner-Coffman method, we define

_ 09(z) _ da(z)
v(z) = gy w(z) = 9y (4.3)
Uniqueness follows if we can show that
w'(1) < 0. (4.4)

To this end, we investigate the differential equations satisfied by » and w,
obtained by differentiating (2.2) with respect to v:

v’ = K (a® + 3¢% — 1) v + 2K agw ALK
w"” = 2Lagv + Lo*w, (4.5)
v(0)=v(1)=0, ' (0)=1, w(0)=0. (4.6)

The condition v'(0) = 1 implies that v(z) is positive in some neighborhood
of z =0.

We regard ¢ and a as known functions; then (4.5) is a system of linear
equations in v and w. The system (4.5), in fact, has another solution. It is
easy to verify that

o(2) = ¢'(2), W(a)=d(x) (4.7)
satisfy (4.5). Note the following properties of 7 and w.

Lemma 4
W) <0, Wa)>0, oe0,1] (4.8)

w(1) > 0. (4.9)

For any positive constant ¢, the functions © = o+ cv and © = W + cw are

solutions of (4.5).

Now suppose that (4.4) is not true.

13



Lemma 5 [fw'(1) > 0, then there exists a ¢ greater than 0 such that
o(x) <0, w(z)>0, ze€][0,1], (4.10)

and one of the two functions © and W touches the x axis tangentially at an
interior point in (0,1).

Proof. Since v and 7 have opposite signs for z near 0, ¥ cannot remain
negative for all positive ¢. Let ¢; be the critical value after which 7 is no
longer always negative. If w(z) = W(z) + cyw(x) > 0 for all z, then ¢ is
the choice of ¢ required in the lemma. Otherwise, let ¢; be the critical value
after which @ is no longer always positive. Then ¢y is the choice of ¢ if we
can show that w(z) = wW(z) + cow(x) does not cross the z axis at z = 1.
This follows from the fact that @'(1) = w'(1) + caw’(1) > 0. 1

We can now derive a contradiction, to complete the proof of Theorem 3.
First we see that ¢ and @ cannot be tangential to the x axis at the same
point, because, by the uniqueness theorem for linear systems of equations,
the only solution for which both functions are tangential to the z axis at the
same point is the trivial solution. Suppose ¥ is tangential to the z axis at
2 = 0. Then w(o) > 0. The point ¢ is a local maximum of ¢, so ?"(¢) < 0.
However, the first equation in (4.5) gives "(¢) = 2Ka(o)¢(o)i(o) > 0, a
contradiction. A similar contradiction can be obtained for the case when
touches the z axis at a point o, by using the second equation in (4.5) and
the fact that @ has a local minimum at o.
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